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Data for this talk:

(1) A prime p

(2) The p-local spectrum BP and its associ-

ated Hopf algebroid (BP∗, BP∗BP ), where

BP∗ ∼= Z(p)[v1, v2, . . . ].

(3) A Landweber exact commutative ring spec-

trum E. This means E∗ is a commutative

BP∗-algebra and the sequence (p, v1, v2, . . . )

is regular on E∗. In this case we have an

associated Hopf algebroid (E∗, E∗E), where

E∗E ∼= E∗ ⊗BP∗ BP∗BP ⊗BP∗ E∗.

Examples are E(n), v−1
n BP , En, K, elliptic

cohomology.
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If X is a space or a spectrum, BP∗X is a

BP∗BP -comodule and E∗X is an E∗E-comodule.

There is a map of Hopf algebroids

Φ: (BP∗, BP∗BP ) −→ (E∗, E∗E)

that induces a functor

Φ∗ : BP∗BP -comod −→ E∗E-comod.

defined by Φ∗M ∼= E∗ ⊗BP∗M . Landweber ex-

actness implies that Φ∗ is exact and

E∗X ∼= Φ∗(BP∗X)

for any spectrum X.

Since Φ∗ commutes with all colimits, it ought

to have a right adjoint, though this seems not

to have been noticed before.
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Lemma: The functor Φ∗ has a right adjoint

Φ∗.

Proof: One sees easily that

Φ∗(E∗E ⊗E∗M) ∼= BP∗BP ⊗BP∗M.

An arbitrary E∗E-comodule M fits into an ex-

act sequence of comodules

0 −→M
ψ−→ E∗E ⊗E∗M

ψg−−→ E∗E ⊗E∗ N

where g : E∗E⊗E∗M −→ N is the cokernel of ψ.

It is not too difficult to define Φ∗ on arbitrary

maps of extended comodules, and then, since

Φ∗ will have to be left exact, we must define

Φ∗M ∼= kerΦ∗(ψg).�
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Now consider the counit of this adjunction

ε : Φ∗Φ∗M −→M.

Plug in an extended comodule to find

Φ∗Φ∗(E∗E ⊗E∗M) ∼= Φ∗(BP∗BP ⊗BP∗M)
∼= E∗ ⊗BP∗ BP∗BP ⊗BP∗M

∼= E∗E ⊗E∗M.

Thus the counit ε is an isomorphism on ex-

tended E∗E-comodules. Since it is a natural

transformation of left exact functors, and ev-

ery comodule is a kernel of a map of extended

comodules, we get the following theorem.

Theorem: The counit Φ∗Φ∗M −→ M is an iso-

morphism. In particular, Φ∗ defines an equiv-

alence of categories between E∗E-comodules

and its image, a full subcategory of BP∗BP -

comodules.
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We now want to know: which subcategory of

BP∗BP -comodules is it?

For this, we look at the other composite Φ∗Φ∗.
One can easily see that this is a left exact

idempotent functor, equipped with a natural

transformation M −→ Φ∗Φ∗M .

General nonsense tells us that Φ∗Φ∗ is a lo-

calization functor! We denote it by LE∗; it is

localization with respect to the class of maps

W = {f : Φ∗Φ∗f is an iso}. This means that

the map M −→ LE∗M is in W and LE∗M is W-

local, which means that

BP∗BP -comod(f, LE∗M)

is an isomorphism for all f ∈ W.

Note that W = {f : Φ∗f is an iso} because Φ∗

is an equivalence onto its image. But Φ∗ is

exact, so W = {f : ker f, coker f ∈ AE∗}, where

AE∗ = kerΦ∗ = {M : Φ∗M = 0}.
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We are now reduced to computing AE∗ = kerΦ∗.
Because Φ∗ is left exact and commutes with

colimits, AE∗ is a hereditary torsion theory.

That is, it is closed under subobjects, quotient

objects, extensions, and arbitrary direct sums

(and suspensions, in the graded case).

There are some obvious hereditary torsion the-

ories of BP∗BP -comodules. Let Tn be the full

subcategory of vn-torsion comodules, so that

T0 is the p-torsion comodules and T−1 is all

comodules. Take T∞ = {0}. One can easily

check that the Tn are hereditary torsion the-

ories, and by well-known results of Johnson-

Yosimura,

T−1 ⊇ T0 ⊇ · · · ⊇ Tn ⊇ · · · .

Theorem: Suppose T is a hereditary torsion

theory of BP∗BP -comodules, and suppose T
contains a nonzero finitely presented comod-

ule. Then T = Tn for some −1 ≤ n <∞.
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Let In = (p, v1, . . . , vn−1) as usual, so I0 = 0.

Theorem: Define heightE to be the unique

n with E∗/In 6= 0 and E∗/In+1 = 0, or ∞ if

E∗/In 6= 0 for all n. Then AE∗ = TheightE.

Theorem: If E and E′ are two Landweber exact

commutative ring spectra of the same height,

then the categories of E∗E-comodules and E′∗E
′-

comodules are equivalent.

We thus denote LE(n)∗ by Ln, in analogy with

the topological Ln. If E has height n, then the

category of E∗E-comodules is equivalent to the

category of Ln-local BP∗BP -comodules.
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Corollary (Miller-Ravenel change of rings theo-

rem): Suppose M and N are v−1
n BP∗(v−1

n BP )-

comodules. Then

Ext∗∗
v−1
n BP∗(v−1

n BP )
(M,N) ∼=

Ext∗∗E(n)∗E(n)(E(n)∗ ⊗BP∗M,E(n)∗ ⊗BP∗ N).

The Ext groups are isomorphic because the

categories they are taken in are equivalent!

Can also recover change of rings theorems of

Morava and Hovey-Sadofsky.

Corollary: Every nonzero E∗E-comodule has a

nonzero primitive.

Because every BP∗BP -comodule does so, in-

cluding the local ones.
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Corollary: The primitives in E∗/Ik are Fp[vk] if

k < heightE and Fp[vk, v−1
k ] if k = heightE.

This has to be interpreted correctly if k = 0.

Corollary: If I is an invariant radical ideal in E∗,
then I = In for some n ≤ heightE. Converse

is true for E(n)∗, En∗, and v−1
n BP∗.

Corollary: (Landweber filtration) Every E∗E-

comodule M that is finitely presented over E∗
admits a finite filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mt

by subcomodules so that each quotient Mi/Mi−1

is isomorphic as a comodule to a suspension of

E∗/Ik for some k ≤ heightE, depending on i.
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The functor Ln on BP∗BP -comodules is very
interesting itself. Note that it is left exact, but
has nontrivial right derived functors Lin.

Theorem: There is a strongly and conditionally
convergent spectral sequence of comodules

E
s,t
2 = (LsnBP∗X)t ⇒ BPt−sLnX,

with dr : E
s,t
r −→ E

s+r,t+r−1
r . Every element in

E
0,t
2 coming from BP∗X is a permanent cycle.

Theorem: (1) LsnM = 0 if s > n.

(2) LnBP∗/Ik = BP∗/Ik for k < n but LnBP∗/In =
v−1
n BP∗/In.

(3) Ln−kn (BP∗/Ik) = BP∗/(Ik, I
∞
n+1), and all other

derived functors are 0.

(4) LsnM is the Cech cohomology, in the sense
of Greenlees and May, of the BP∗-module M

relative to In+1.
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