The structure of $E(n) \ast E(n)$-comodules
Mark Hovey and Neil Strickland
Wesleyan University and University of Sheffield
January 17, 2003
Data for this talk:

(1) A prime p

(2) The p-local spectrum BP and its associated Hopf algebroid $(BP_{\ast}, BP_{\ast}BP)$, where $BP_{\ast} \cong \mathbb{Z}_\lp[v_1, v_2, \ldots]$.

(3) A Landweber exact commutative ring spectrum E. This means E_{\ast} is a commutative BP_{\ast}-algebra and the sequence (p, v_1, v_2, \ldots) is regular on E_{\ast}. In this case we have an associated Hopf algebroid $(E_{\ast}, E_{\ast}E)$, where

$$E_{\ast}E \cong E_{\ast} \otimes_{BP_{\ast}} BP_{\ast}BP \otimes_{BP_{\ast}} E_{\ast}.$$

Examples are $E(n)$, $v_n^{-1}BP$, E_n, K, elliptic cohomology.
If X is a space or a spectrum, BP_*X is a BP_*BP-comodule and E_*X is an E_*E-comodule. There is a map of Hopf algebroids

$$\Phi: (BP_*, BP_*BP) \to (E_*, E_*E)$$

that induces a functor

$$\Phi_*: BP_*BP\text{-comod} \to E_*E\text{-comod}.$$ defined by $\Phi_*M \cong E_* \otimes_{BP_*} M$. Landweber exactness implies that Φ_* is exact and

$$E_*X \cong \Phi_*(BP_*X)$$

for any spectrum X.

Since Φ_* commutes with all colimits, it ought to have a right adjoint, though this seems not to have been noticed before.
Lemma: The functor Φ_* has a right adjoint Φ^*.

Proof: One sees easily that

$$\Phi^*(E_*E \otimes_{E_*} M) \cong B_{P*}B_{P} \otimes_{B_{P*}} M.$$

An arbitrary E_*E-comodule M fits into an exact sequence of comodules

$$0 \to M \overset{\psi}{\to} E_*E \otimes_{E_*} M \overset{\psi g}{\to} E_*E \otimes_{E_*} N$$

where $g: E_*E \otimes_{E_*} M \to N$ is the cokernel of ψ. It is not too difficult to define Φ^* on arbitrary maps of extended comodules, and then, since Φ^* will have to be left exact, we must define

$$\Phi^* M \cong \ker \Phi^*(\psi g). \square$$
Now consider the counit of this adjunction

$$\epsilon : \Phi_*\Phi^* M \to M.$$

Plug in an extended comodule to find

$$\Phi_*\Phi^*(E_*E \otimes_{E_*} M) \cong \Phi_*(BP_*BP \otimes_{BP_*} M)$$

$$\cong E_* \otimes_{BP_*} BP_*BP \otimes_{BP_*} M \cong E_*E \otimes_{E_*} M.$$

Thus the counit ϵ is an isomorphism on extended E_*E-comodules. Since it is a natural transformation of left exact functors, and every comodule is a kernel of a map of extended comodules, we get the following theorem.

Theorem: The counit $\Phi_*\Phi^* M \to M$ is an isomorphism. In particular, Φ^* defines an equivalence of categories between E_*E-comodules and its image, a full subcategory of BP_*BP-comodules.
We now want to know: which subcategory of BP_*BP-comodules is it?

For this, we look at the other composite $\Phi^*\Phi_*$. One can easily see that this is a left exact idempotent functor, equipped with a natural transformation $M \to \Phi^*\Phi_*M$.

General nonsense tells us that $\Phi^*\Phi_*$ is a localization functor! We denote it by LE_*; it is localization with respect to the class of maps $\mathcal{W} = \{f : \Phi^*\Phi_*f \text{ is an iso}\}$. This means that the map $M \to LE_*M$ is in \mathcal{W} and LE_*M is \mathcal{W}-local, which means that

$$BP_*BP\text{-comod}(f, LE_*M)$$

is an isomorphism for all $f \in \mathcal{W}$.

Note that $\mathcal{W} = \{f : \Phi_*f \text{ is an iso}\}$ because Φ^* is an equivalence onto its image. But Φ_* is exact, so $\mathcal{W} = \{f : \ker f, \coker f \in \mathcal{A}_{E_*}\}$, where $\mathcal{A}_{E_*} = \ker \Phi_* = \{M : \Phi_*M = 0\}$. 5
We are now reduced to computing $A_{E_*} = \ker \Phi_*$. Because Φ_* is left exact and commutes with colimits, A_{E_*} is a hereditary torsion theory. That is, it is closed under subobjects, quotient objects, extensions, and arbitrary direct sums (and suspensions, in the graded case).

There are some obvious hereditary torsion theories of BP_*BP-comodules. Let T_n be the full subcategory of v_n-torsion comodules, so that T_0 is the p-torsion comodules and T_{-1} is all comodules. Take $T_\infty = \{0\}$. One can easily check that the T_n are hereditary torsion theories, and by well-known results of Johnson-Yosimura,

$$T_{-1} \supseteq T_0 \supseteq \cdots \supseteq T_n \supseteq \cdots.$$

Theorem: Suppose T is a hereditary torsion theory of BP_*BP-comodules, and suppose T contains a nonzero finitely presented comodule. Then $T = T_n$ for some $-1 \leq n < \infty$.

Let $I_n = (p, v_1, \ldots, v_{n-1})$ as usual, so $I_0 = 0$.

Theorem: Define height E to be the unique n with $E_*/I_n \neq 0$ and $E_*/I_{n+1} = 0$, or ∞ if $E_*/I_n \neq 0$ for all n. Then $A_{E_*} = T_{\text{height } E}$.

Theorem: If E and E' are two Landweber exact commutative ring spectra of the same height, then the categories of E_*E-comodules and E'_*E'-comodules are equivalent.

We thus denote $L_{E(n)_*}$ by L_n, in analogy with the topological L_n. If E has height n, then the category of E_*E-comodules is equivalent to the category of L_n-local BP_*BP-comodules.
Corollary (Miller-Ravenel change of rings theorem): Suppose M and N are $v_n^{-1}BP_*(v_n^{-1}BP)$-comodules. Then

$$\Ext^{**}_{v_n^{-1}BP_*(v_n^{-1}BP)}(M, N) \cong \Ext^{**}_{E(n)_*E(n)}(E(n)_* \otimes_{BP_*} M, E(n)_* \otimes_{BP_*} N).$$

The Ext groups are isomorphic because the categories they are taken in are equivalent!

Can also recover change of rings theorems of Morava and Hovey-Sadofsky.

Corollary: Every nonzero E_*E-comodule has a nonzero primitive.

Because every BP_*BP-comodule does so, including the local ones.
Corollary: The primitives in E_*/I_k are $\mathbb{F}_p[v_k]$ if $k < \text{height } E$ and $\mathbb{F}_p[v_k, v_k^{-1}]$ if $k = \text{height } E$.

This has to be interpreted correctly if $k = 0$.

Corollary: If I is an invariant radical ideal in E_*, then $I = I_n$ for some $n \leq \text{height } E$. Converse is true for $E(n)_*$, E_n^*, and $v_n^{-1}BP^*$.

Corollary: (Landweber filtration) Every E_*E-comodule M that is finitely presented over E_* admits a finite filtration

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_t$$

by subcomodules so that each quotient M_i/M_{i-1} is isomorphic as a comodule to a suspension of E_*/I_k for some $k \leq \text{height } E$, depending on i.

9
The functor L_n on BP_*BP-comodules is very interesting itself. Note that it is left exact, but has nontrivial right derived functors L^i_n.

Theorem: There is a strongly and conditionally convergent spectral sequence of comodules

$$E^{s,t}_2 = (L^s_n BP_* X)_t \Rightarrow BP_{t-s} L_n X,$$

with $d_r : E^{s,t}_r \to E^{s+r,t+r-1}_r$. Every element in $E^{0,t}_2$ coming from $BP_* X$ is a permanent cycle.

Theorem: (1) $L^s_n M = 0$ if $s > n$.

(2) $L_n BP_* / I_k = BP_* / I_k$ for $k < n$ but $L_n BP_* / I_n = v^{-1}_n BP_* / I_n$.

(3) $L^{n-k}_n (BP_* / I_k) = BP_* / (I_k, I_{n+1}^\infty)$, and all other derived functors are 0.

(4) $L^s_n M$ is the Cech cohomology, in the sense of Greenlees and May, of the BP_*-module M relative to I_{n+1}.

10