The structure of $E(n)_*E(n)$ -comodules Mark Hovey and Neil Strickland Wesleyan University and University of Sheffield January 17, 2003

Data for this talk:

- (1) A prime p
- (2) The p-local spectrum BP and its associated Hopf algebroid (BP_*, BP_*BP) , where $BP_* \cong \mathbb{Z}_{(p)}[v_1, v_2, \dots]$.
- (3) A Landweber exact commutative ring spectrum E. This means E_* is a commutative BP_* -algebra and the sequence (p, v_1, v_2, \dots) is regular on E_* . In this case we have an associated Hopf algebroid (E_*, E_*E) , where

$$E_*E \cong E_* \otimes_{BP_*} BP_*BP \otimes_{BP_*} E_*.$$

Examples are E(n), $v_n^{-1}BP$, E_n , K, elliptic cohomology.

If X is a space or a spectrum, BP_*X is a BP_*BP -comodule and E_*X is an E_*E -comodule. There is a map of Hopf algebroids

$$\Phi: (BP_*, BP_*BP) \to (E_*, E_*E)$$

that induces a functor

$$\Phi_*$$
: BP_*BP -comod $\to E_*E$ -comod.

defined by $\Phi_*M \cong E_* \otimes_{BP_*} M$. Landweber exactness implies that Φ_* is exact and

$$E_*X \cong \Phi_*(BP_*X)$$

for any spectrum X.

Since Φ_* commutes with all colimits, it ought to have a right adjoint, though this seems not to have been noticed before.

Lemma: The functor Φ_* has a right adjoint Φ^* .

Proof: One sees easily that

$$\Phi^*(E_*E \otimes_{E_*} M) \cong BP_*BP \otimes_{BP_*} M.$$

An arbitrary E_*E -comodule M fits into an exact sequence of comodules

$$0 \to M \xrightarrow{\psi} E_*E \otimes_{E_*} M \xrightarrow{\psi g} E_*E \otimes_{E_*} N$$

where $g: E_*E \otimes_{E_*} M \to N$ is the cokernel of ψ . It is not too difficult to define Φ^* on arbitrary maps of extended comodules, and then, since Φ^* will have to be left exact, we must define

$$\Phi^*M\cong\ker\Phi^*(\psi g).\square$$

Now consider the counit of this adjunction

$$\epsilon \colon \Phi_* \Phi^* M \to M.$$

Plug in an extended comodule to find

$$\Phi_*\Phi^*(E_*E \otimes_{E_*} M) \cong \Phi_*(BP_*BP \otimes_{BP_*} M)$$

$$\cong E_* \otimes_{BP_*} BP_*BP \otimes_{BP_*} M \cong E_*E \otimes_{E_*} M.$$

Thus the counit ϵ is an isomorphism on extended E_*E -comodules. Since it is a natural transformation of left exact functors, and every comodule is a kernel of a map of extended comodules, we get the following theorem.

Theorem: The counit $\Phi_*\Phi^*M \to M$ is an isomorphism. In particular, Φ^* defines an equivalence of categories between E_*E -comodules and its image, a full subcategory of BP_*BP -comodules.

We now want to know: which subcategory of BP_*BP -comodules is it?

For this, we look at the other composite $\Phi^*\Phi_*$. One can easily see that this is a left exact idempotent functor, equipped with a natural transformation $M \to \Phi^*\Phi_*M$.

General nonsense tells us that $\Phi^*\Phi_*$ is a localization functor! We denote it by L_{E_*} ; it is localization with respect to the class of maps $\mathcal{W}=\{f:\Phi^*\Phi_*f \text{ is an iso}\}$. This means that the map $M\to L_{E_*}M$ is in \mathcal{W} and $L_{E_*}M$ is \mathcal{W} -local, which means that

$$BP_*BP$$
-comod $(f, L_{E_*}M)$

is an isomorphism for all $f \in \mathcal{W}$.

Note that $\mathcal{W}=\{f:\Phi_*f \text{ is an iso}\}$ because Φ^* is an equivalence onto its image. But Φ_* is exact, so $\mathcal{W}=\{f:\ker f,\operatorname{coker} f\in\mathcal{A}_{E_*}\}$, where $\mathcal{A}_{E_*}=\ker\Phi_*=\{M:\Phi_*M=0\}.$

We are now reduced to computing $\mathcal{A}_{E_*} = \ker \Phi_*$. Because Φ_* is left exact and commutes with colimits, \mathcal{A}_{E_*} is a *hereditary torsion theory*. That is, it is closed under subobjects, quotient objects, extensions, and arbitrary direct sums (and suspensions, in the graded case).

There are some obvious hereditary torsion theories of BP_*BP -comodules. Let \mathcal{T}_n be the full subcategory of v_n -torsion comodules, so that \mathcal{T}_0 is the p-torsion comodules and \mathcal{T}_{-1} is all comodules. Take $\mathcal{T}_\infty = \{0\}$. One can easily check that the \mathcal{T}_n are hereditary torsion theories, and by well-known results of Johnson-Yosimura,

$$\mathcal{T}_{-1} \supseteq \mathcal{T}_0 \supseteq \cdots \supseteq \mathcal{T}_n \supseteq \cdots$$
.

Theorem: Suppose \mathcal{T} is a hereditary torsion theory of BP_*BP -comodules, and suppose \mathcal{T} contains a nonzero finitely presented comodule. Then $\mathcal{T}=\mathcal{T}_n$ for some $-1\leq n<\infty$.

Let $I_n = (p, v_1, \dots, v_{n-1})$ as usual, so $I_0 = 0$.

Theorem: Define height E to be the unique n with $E_*/I_n \neq 0$ and $E_*/I_{n+1} = 0$, or ∞ if $E_*/I_n \neq 0$ for all n. Then $\mathcal{A}_{E_*} = \mathcal{T}_{\mathsf{height}\,E}$.

Theorem: If E and E' are two Landweber exact commutative ring spectra of the same height, then the categories of E_*E -comodules and E'_*E' -comodules are equivalent.

We thus denote $L_{E(n)_*}$ by L_n , in analogy with the topological L_n . If E has height n, then the category of E_*E -comodules is equivalent to the category of L_n -local BP_*BP -comodules.

Corollary (Miller-Ravenel change of rings theorem): Suppose M and N are $v_n^{-1}BP_*(v_n^{-1}BP)$ -comodules. Then

$$\mathsf{Ext}^{**}_{v_n^{-1}BP_*(v_n^{-1}BP)}(M,N) \cong \\ \mathsf{Ext}^{**}_{E(n)_*E(n)}(E(n)_* \otimes_{BP_*} M, E(n)_* \otimes_{BP_*} N).$$

The Ext groups are isomorphic because the categories they are taken in are equivalent!

Can also recover change of rings theorems of Morava and Hovey-Sadofsky.

Corollary: Every nonzero E_*E -comodule has a nonzero primitive.

Because every BP_*BP -comodule does so, including the local ones.

Corollary: The primitives in E_*/I_k are $\mathbb{F}_p[v_k]$ if k < height E and $\mathbb{F}_p[v_k, v_k^{-1}]$ if k = height E.

This has to be interpreted correctly if k = 0.

Corollary: If I is an invariant radical ideal in E_* , then $I = I_n$ for some $n \le \text{height } E$. Converse is true for $E(n)_*$, E_{n*} , and $v_n^{-1}BP_*$.

Corollary: (Landweber filtration) Every E_*E comodule M that is finitely presented over E_* admits a finite filtration

$$0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_t$$

by subcomodules so that each quotient M_i/M_{i-1} is isomorphic as a comodule to a suspension of E_*/I_k for some $k \leq \text{height } E$, depending on i.

The functor L_n on BP_*BP -comodules is very interesting itself. Note that it is left exact, but has nontrivial right derived functors L_n^i .

Theorem: There is a strongly and conditionally convergent spectral sequence of comodules

$$E_2^{s,t} = (L_n^s B P_* X)_t \Rightarrow B P_{t-s} L_n X,$$

with $d_r \colon E_r^{s,t} \to E_r^{s+r,t+r-1}$. Every element in $E_2^{0,t}$ coming from BP_*X is a permanent cycle.

Theorem: (1) $L_n^s M = 0$ if s > n.

- (2) $L_n BP_*/I_k = BP_*/I_k$ for k < n but $L_n BP_*/I_n = v_n^{-1} BP_*/I_n$.
- (3) $L_n^{n-k}(BP_*/I_k) = BP_*/(I_k, I_{n+1}^{\infty})$, and all other derived functors are 0.
- (4) $L_n^s M$ is the Cech cohomology, in the sense of Greenlees and May, of the BP_* -module M relative to I_{n+1} .