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Abstract

In this paper, we classify additive closed symmetric monoidal structures on
the category of left R-modules by using Watts’ theorem. An additive closed
symmetric monoidal structure is equivalent to an R-module ΛA,B equipped with
two commuting right R-module structures represented by the symbols A and
B, an R-module K to serve as the unit, and certain isomorphisms. We use this
result to look at simple cases. We find rings R for which there are no additive
closed symmetric monoidal structures on R-modules, for which there is exactly
one (up to isomorphism), for which there are exactly seven, and for which there
are a proper class of isomorphism classes of such structures. We also prove some
general structural results; for example, we prove that the unit K must always
be a finitely generated R-module.
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Introduction

It is well known that the category of left R-modules becomes closed symmet-
ric monoidal under the tensor product A⊗R B if and only if R is commutative.
However, there are many other cases when the category of R-modules is closed
symmetric monoidal. For example, if k is a field and G is a group, the cate-
gory of k[G]-modules (that is, representations of G on k-vector spaces) is closed
symmetric monoidal under A ⊗k B, even though k[G] is not commutative in
general. This is explained by the fact that k[G] is a Hopf algebra. But there are
other examples where R is not a Hopf algebra, such as the category of perverse
R-modules considered in [Hov09].

So a natural question to ask is just what one needs to know about R in
order to produce a closed symmetric monoidal structure on the category of
R-modules. Of course, we do not really want an arbitrary closed symmetric
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monoidal structure; we require that the monoidal product be an additive functor
in both variables. We would like to be able to answer basic questions such as the
following. Are there rings R where the category of R-modules cannot be given
an additive closed symmetric monoidal structure? Are there rings R where the
category of R-modules possesses a unique additive closed symmetric monoidal
structure?

At first glance, such problems seem completely intractable because closed
symmetric monoidal structures are so complicated, involving the entire category
of R-modules. The key ingredient, though, is Watts’ theorem [Wat60]. This
theorem says that any additive functor F from R-modules to R-modules that is
right exact and commutes with direct sums is naturally isomorphic to Λ⊗R (−)
for some R-bimodule Λ. After some work, we then see in Theorem 2.1 that a
closed symmetric monoidal structure A∧B on left R-modules must be given by

A ∧B ∼= ((R ∧R)⊗R A)⊗R B,

so that the functor −∧− is determined by R∧R, as a 2-fold bimodule (one left
module structure, and two right module structures).

Then the natural thing to do is try to determine which 2-fold bimodules
ΛA,B actually arise as R ∧ R for some closed symmetric monoidal structure
−∧−. This is more complicated than it seems because one must deal with the
coherence isomorphisms of a closed symmetric monoidal structure, but of course
it can be done; see Theorem 2.3. We also determine in Theorem 2.4 (and the
discussion following it) when two symmetric monoidal structures determined by
Λ and Λ′ are equivalent. This involves an isomorphism

Λ′ ⊗X ⊗X −→ X ⊗ Λ

of 2-fold bimodules, where X is an element of the bimodule Picard group of R.
We establish some basic structural results, though we think there is much

more to say. For example, we show in Theorem 4.4 and Theorem 4.5 that the
unit K of an additive closed symmetric monoidal structure on left R-modules
must be a finitely generated R-module with a commutative endomorphism ring.
To proceed further along these lines, it might be worthwhile to develop a theory
of flatness for an additive symmetric monoidal structure ∧ on R-modules, and
concentrate on those additive symmetric monoidal structures for which projec-
tives are flat.

We also consider examples. For example, if R is a field (Theorem 3.3) or a
principal ideal domain that does not contain a field (Theorem 4.9), then there is
exactly one additive closed symmetric monoidal structure on R-modules (up to
symmetric monoidal equivalence). We also show in Theorem 3.3 that if R is a
division ring that is not a field, there are no additive closed symmetric monoidal
structures on R-modules. If R is the group ring F2[Z/2], there are precisely
7 different closed symmetric monoidal structures on R-modules, though only
three different underlying functors (see the comments after Theorem 3.6). If R
is the group ring k[Z/2] where the characteristic is not 2, however, there are a
proper class of inequivalent additive closed symmetric monoidal structures on
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the category of R-modules (Theorem 3.15). Most of these cannot come from
Hopf algebra structures on R.

Throughout this paper, the symbol ⊗ will denote the tensor product over
the ring R unless otherwise stated. Furthermore, all functors will be assumed
to be additive, even if not explicitly stated to be so.

The author thanks the referee for his careful reading of this paper.

1. n-fold bimodules

Throughout this paper, we will be working with the category of left R-
modules, but we will frequently have to work with left R-modules that have
multiple different commuting right R-module structures. This necessitates some
complicated notation. We will denote an R ⊗Z (Rop)⊗Zn-module by Λ1,2,...,n,
where the subscripts denote the commuting right R-actions. If we need elements,
we will write x �i r for the ith multiplication. We will call such an object an
n-fold bimodule, and denote the category of such things as Bimodn(R). Now
the symmetric group Σn acts on Bimodn(R) by permuting the right module
structures. Indeed, if σ ∈ Σn is a permutation, then

(σΛ)1,2,...,n = Λσ(1),...,σ(n).

We note that in practice, as we will see below, it is usually easier to denote the
different right module structures by letters, such as ΛA,B,C . If σ denotes the
permutation (132), for example, then we would write σΛ as ΛC,A,B . A map

f : ΛA,B,C −→ ΛC,A,B

would then be a map of left R-modules such that f(x�1r) = f(x)�2r (matching
up the position of the A’s), f(x�2 r) = f(x)�3 r, and f(x�3 r) = f(x)�1 r.

Now, note that the tensor product over R defines a bifunctor

Bimodn(R)× Bimodm(R) −→ Bimodn+m−1(R),

obtained by tensoring the nth right module structure on the first factor with
the left module structure on the second factor. For example, we will have
expressions like

f : ΛC,Γ ⊗ ΓB,A −→ ΛΓ,A ⊗ ΓC,B .

This denotes a map of 3-fold bimodules. In the domain, we tensor the second
right R-module structure on Λ with the left module structure on Γ, whereas
in the range we tensor the first bimodule structure on Λ with the left module
structure on Γ. Furthermore, we have f((x�1 r)⊗y) = f(x⊗y)�2 r, where the
second right module structure on the range comes from the first right module
structure on Γ. Similarly, we have f(x ⊗ (y �1 r)) = f(x ⊗ y) �3 r. We also
have f(x ⊗ (y �2 r)) = f(x ⊗ y) �1 r, where the first right module structure
on the range comes from the second right module structure on Λ, because we
have used the first one to form the tensor product in the range.
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2. Closed symmetric monoidal structures

In this section, we prove our main classification result. We remind the reader
that all tensor products are over R unless otherwise stated.

Theorem 2.1. Suppose the category of R-modules admits an additive closed
symmetric monoidal structure − ∧ −. Then R ∧ R is a 2-fold bimodule, and
there is a natural isomorphism of bifunctors

(R ∧R)B,A ⊗A⊗B ∼= A ∧B.

This theorem is written using the notation of the previous section, so that,
in the domain of this isomorphism

(x�1 r)⊗ y ⊗ z = x⊗ y ⊗ (rz) and (x�2 r)⊗ y ⊗ z = x⊗ (ry)⊗ z.

Also note that if R is a k-algebra, for a commutative ring k, we can look at
k-linear closed symmetric monoidal structures. This would mean that multipli-
cation by x ∈ k on A would induce multiplication by x on A ∧B and on B ∧A
for all B. In this case, the three potentially different actions of k on R∧R would
in fact all be the same.

Proof. Fix an R-module A, and consider the functor B 7→ A ∧ B from left R-
modules to left R-modules. This functor preserves direct sums and is right exact
(it is a left adjoint, because of the closed structure). Watt’s theorem [Wat60]
then implies that A ∧R is an R-bimodule, and

(A ∧R)⊗B ∼= A ∧B

naturally in B. To see that this is also natural in A, recall that the map

αA,B : (A ∧R)⊗B −→ A ∧B

is defined as follows, in the proof of Watt’s theorem. Given b ∈ B, let φb : R −→ B
denote the map of R-modules that takes 1 to b. There is then an induced map
A ∧ φb, and αA,B(x ⊗ b) is defined to be (A ∧ φb)(x). From this, it is easy to
check that αA,B is natural in A as well.

Now let G(A) = A ∧ R. Then A 7→ G(A) is a right exact functor from
R-modules to R-bimodules (or R ⊗Z R

op-modules) that preserves direct sums.
We can therefore apply Watt’s theorem [Wat60] again to give us the desired
result.

The natural question then arises as to which 2-fold bimodules ΛB,A define a
closed symmetric monoidal structure on the category of R-modules.

We first point out that the closed structure always exists.

Lemma 2.2. Suppose ΛB,A is a 2-fold R-bimodule. Then we have a natural
isomorphism

R -mod(ΛB,A ⊗A⊗B,P ) ∼= R -mod(A,Bimod(ΛB,A,Z -mod(B,P ))),
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where we use the right R-module structure on Λ denoted by the subscript B to
form Bimod(ΛB,A,Z -mod(B,P )), and we use the one denoted by the subscript
A to make this abelian group into a left R-module.

Here, as usual, Z -mod(B,P ) is an R-module via the R-action on P , and a
right R-module via the R-action on B.

Proof. This is really just an exercise in adjointness of tensor and Hom, though
one has to be careful to keep track of all the actions. It is easiest to work more
generally. Suppose M is a bimodule. Then we have a natural isomorphism

φ : R -mod(M ⊗B,P ) ∼= Bimod(M,Z -mod(B,P )).

This isomorphism is defined as usual by φ(f)(m)(b) = f(m ⊗ b). The reader
must check that φ(f) is a map of bimodules. To see that φ is an isomorphism,
one constructs its inverse ψ, where ψ(g)(m ⊗ b) = g(m)(b). Again, there are
many details to check, which we leave to the reader. Applying this isomorphism
to M = ΛB,A ⊗A, we get

R -mod(ΛB,A ⊗A⊗B,P ) ∼= Bimod(ΛB,A ⊗A,Z -mod(B,P )).

Now suppose N is a general bimodule. Then there is a natural isomorphism

σ : Bimod(ΛB,A ⊗A,N) −→ R -mod(A,Bimod(ΛB,A, N)).

Once again, we have σ(f)(a)(λ) = f(λ⊗a), and, for the inverse τ of σ, we have
τ(g)(λ ⊗ a) = g(a)(λ). We leave it to the reader to check the details. Taking
N = Z -mod(B,P ) completes the proof.

Naturally, the other conditions necessary for a symmetric monoidal structure
are considerably more complicated. The basic idea, however, is simple. In order
to get symmetry of the product A∧B, we need the two right module structures
on Λ to be isomorphic. In order to get associativity of A ∧ B, we need the
three different right module structures on Λ ⊗ Λ to be isomorphic. These two
together, of course, will imply that all of the different permutations of the n+ 1
different right module structures on Λ⊗n will be isomorphic. Then we also need
a unit.

Theorem 2.3. Let ΛB,A be a 2-fold bimodule used to define − ∧ − on R-
modules. There is a one-to-one correspondence between additive closed symmet-
ric monoidal structures on R-modules with − ∧− as the monoidal product and
the following data:

(a) An associativity isomorphism of 3-fold bimodules

a : ΛC,Λ ⊗ ΛB,A −→ ΛΛ,A ⊗ ΛC,B .

This can be remembered by noting that the subscripts on the first Λ in the
target are the second subscripts on the two Λ’s in the domain, and the
subscripts on the second Λ in the target are the first subscripts on the two
Λ’s in the domain.
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(b) A left R-module K and a unit isomorphism ` : ΛB,K ⊗K ∼= RB of bimod-
ules.

(c) A commutativity isomorphism c : ΛB,A −→ ΛA,B.

This data must satisfy the following coherence conditions.

1. (Associativity pentagon) Let Γ = ∆ = Λ for notational clarity. Then the
following diagram commutes.

ΛD,Γ ⊗ ΓC,∆ ⊗∆B,A
a⊗1−−−→ ΛΓ,∆ ⊗ ΓD,C ⊗∆B,A

1⊗T−−−→ Λ∆,Γ ⊗ ΓB,A ⊗∆D,C

1⊗a
??y ??ya⊗1

ΛD,Γ ⊗ Γ∆,A ⊗∆C,B −−−→
a⊗1

ΛΓ,A ⊗ ΓD,∆ ⊗∆C,B −−−→
1⊗a

ΛΓ,A ⊗ Γ∆,B ⊗∆D,C

Here 1⊗T switches the last two factors using the commutativity isomorphism of
⊗R, but also reverses the symbols Γ and ∆, which after all both mean Λ. This
necessitates changing the subscripts on Λ as well.

2. (Compatibility of left and right unit) The following diagram commutes:

ΛB,Λ ⊗ ΛK,A ⊗K
a⊗1−−−−−→ ΛΛ,A ⊗ ΛB,K ⊗K

1⊗`−−−−−→ ΛB,A‚‚‚ ‚‚‚
ΛB,Λ ⊗ ΛK,A ⊗K −−−−−→

1⊗c⊗1
ΛB,Λ ⊗ ΛA,K ⊗K −−−−−→

1⊗`
ΛB,A.

3. (Commutativity-associativity hexagon) The following diagram commutes.

ΛC,Λ ⊗ ΛB,A
1⊗c−−−→ ΛC,Λ ⊗ ΛA,B

a−−−→ ΛΛ,B ⊗ ΛC,A
1⊗c−−−→ ΛΛ,B ⊗ ΛA,C‚‚‚ ‚‚‚

ΛC,Λ ⊗ ΛB,A −−−→
a

ΛΛ,A ⊗ ΛC,B −−−→
c⊗1

ΛA,Λ ⊗ ΛC,B −−−→
a

ΛΛ,B ⊗ ΛA,C .

4. The composite
ΛB,A

c−→ ΛA,B
c−→ ΛB,A

is the identity.

If R is a k-algebra for a commutative ring k, and we are looking at k-linear
closed symmetric monoidal structures, then this theorem remains true as long
as the three different k-module structures on Λ are the same.

Proof. Just using the usual associativity and commutativity isomorphisms for
⊗R, we find natural isomorphisms

(A ∧B) ∧ C ∼= ΛC.Λ ⊗ ΛB,A ⊗A⊗B ⊗ C

and
A ∧ (B ∧ C) ∼= ΛΛ,A ⊗ ΛC,B ⊗A⊗B ⊗ C.

Given a, it is now clear how to define a natural associativity isomorphism aA,B,C
for − ∧ −, simply as a ⊗ 1 ⊗ 1 ⊗ 1. On the other hand, given the natural
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associativity isomorphism aA,B,C , we let A = B = C = R to get a. One can see
that a then respects the given right module structures by using naturality with
respect to the right multiplication by x maps rx : R −→ R, in the A, B, and C
slots.

There is a similar equivalence between the isomorphism ` : ΛB,K ⊗K −→ RB
and a natural left unit isomorphism `B : K ∧ B −→ B. There is also a similar
equivalence between c and a natural commutativity isomorphism cA,B .

An excellent reference for the coherence diagrams needed to make aA,B,C ,
`B , and cA,B part of a symmetric monoidal structure is [JS93], particularly
Propositions 1.1 and 2.1. They show that the only coherence diagrams needed
are the associativity pentagon, the compatibility between the right and left unit,
the commutativity-associativity hexagon (diagram B1 of [JS93, p. 33]), the fact
that the right unit is rB = `BcB,K , and the fact that c2 is the identity. Given
cA,B , this means we do not need rB , so we have omitted it. One must now
merely translate these coherence diagrams into analogous facts about a, `, and
c to complete the proof.

The associativity pentagon is perhaps the most confusing, so we will discuss
that one in some detail, and leave the others to the reader. Here is the standard
associativity pentagon.

((A ∧B) ∧ C) ∧D
aA∧B,C,D−−−−−−−→ (A ∧B) ∧ (C ∧D)

aA,B,C∧D−−−−−−−→ A ∧ (B ∧ (C ∧D))

aA,B,C∧1

??y ‚‚‚
(A ∧ (B ∧ C)) ∧D −−−−−−−→

aA,B∧C,D

A ∧ ((B ∧ C) ∧D) −−−−−−−→
1∧aB,C,D

A ∧ (B ∧ (C ∧D))

Using the standard commutativity and associativity isomorphisms of ⊗, the first
term

((A ∧B) ∧ C) ∧D
is represented by ΛD,Γ⊗ΓC,∆⊗∆B,A (tensored with A⊗B⊗C⊗D). Here ∆B,A

tensors A and B, ΓC,∆ tensors (A∧B) and C, and ΛD,Γ tensors ((A∧B)∧C)
and D. The map aA∧B,C,D treats A ∧ B as a single object, and will therefore
leave the factor ∆B,A unchanged, so is represented by

a⊗ 1: ΛD,Γ ⊗ ΓC,∆ ⊗∆B,A −→ ΛΓ,∆ ⊗ ΓD,C ⊗∆B,A.

The map aA,B,C∧D treats C∧D as a single object, and will therefore leave ΓD,C
unchanged and apply a to the other two. In order to do this, we would like to
switch the order of ΓD,C and ∆B,A, and then apply a ⊗ 1. It turns out to be
notationally much easier later if we also reverse the names of Γ and ∆, so that
the map aA,B,C∧D is represented by the composite

ΛΓ,∆ ⊗ ΓD,C ⊗∆B,A
1⊗T−−−→ Λ∆,Γ ⊗ ΓB,A ⊗∆D,C

a⊗1−−→ ΛΓ,A ⊗ Γ∆,B ⊗∆D,C .

This completes the clockwise half of the associativity pentagon. The counter-
clockwise part is simpler. The first map aA,B,C ∧ 1 leaves D alone, so will leave
ΛD,Γ alone. It is therefore represented by

1⊗ a : ΛD,Γ ⊗ ΓC,∆ ⊗∆B,A −→ ΛD,Γ ⊗ Γ∆,A ⊗∆C,B .
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The next map aA,B∧C,D treats B∧C as a single entity, so will leave ∆C,B alone.
It is then represented by

a⊗ 1: ΛD,Γ ⊗ Γ∆,A ⊗∆C,B −→ ΛΓ,A ⊗ ΓD,∆ ⊗∆C,B .

Finally, the last map 1 ⊗ aB,C,D leaves A alone, so will leave ΛΓ,A alone. It is
reprensented by

a⊗ 1: ΛΓ,A ⊗ ΓD,∆ ⊗∆C,B −→ ΛΓ,A ⊗ Γ∆,B ⊗∆D,C .

This completes the construction of the associativity pentagon.

We now point out that Watt’s theorem can also be used to classify additive
symmetric monoidal equivalences between additive symmetric monoidal struc-
tures on R-modules. In an attempt to make the various bimodule structures
clear, we have used Y , Z, and W as alternative names for X in the theorem
below. We have also used T for the usual commutativity isomorphism of the
tensor product and for a general permutation of tensor factors.

Theorem 2.4. Suppose ∧ and � are additive symmetric monoidal structures on
the category of R-modules with units K and K ′, respectively, and represented
by the 2-fold bimodules Λ and Λ′, respectively. Then an additive symmetric
monoidal functor from ∧ to � that has a right adjoint is equivalent to a bimodule
X, an isomorphism η : K ′ −→ X ⊗K, and an isomorphism

m : Λ′Y,X ⊗XA ⊗ YB −→ X ⊗ ΛB,A

of 2-fold bimodules, such that the following diagrams commute:

1. (Unit)
Λ′Y,K′ ⊗K′ ⊗ YB

1⊗η⊗1−−−−−→ Λ′Y,X ⊗XK ⊗K ⊗ YB

`⊗1

??y ??y1⊗1⊗T

YB Λ′Y,X ⊗XK ⊗ YB ⊗K‚‚‚ ??ym⊗1

XB ←−−−−−
1⊗`

X ⊗ ΛB,K ⊗K

2. (Commutativity)

Λ′Y,X ⊗XA ⊗ YB
m−−−−−→ X ⊗ ΛB,A

c⊗T
??y ??y1⊗c

Λ′X,Y ⊗ YB ⊗XA −−−−−→
m

X ⊗ ΛA,B
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3. (Associativity)

Λ′Z,Λ′ ⊗ Λ′Y,X ⊗XA ⊗ YB ⊗ ZC
1⊗m⊗1−−−−−→ Λ′Z,X ⊗ (XΛ ⊗ ΛB,A)⊗ ZC

a⊗T
??y ??yT

Λ′Λ′,X ⊗ Λ′Z,Y ⊗ YB ⊗ ZC ⊗XA Λ′Z,X ⊗XΛ ⊗ ZC ⊗ ΛB,A

1⊗m⊗1

??y ??ym⊗1

Λ′W,X ⊗ (W ⊗ ΛC,B)⊗XA X ⊗ ΛC,Λ ⊗ ΛB,A

T

??y ??y1⊗a

Λ′W,X ⊗XA ⊗WΛ ⊗ ΛC,B −−−→
m⊗1

X ⊗ ΛΛ,A ⊗ ΛC,B

Composition of additive symmetric monoidal functors corresponds to the
tensor product of bimodules, and the identity functor corresponds to the bi-
module RR. Thus, additive symmetric monoidal equivalences of additive sym-
metric monoidal structures are given by tensoring with a bimodule that lies in
the bimodule Picard group (see [Yek99]). In fact, if X lies in the bimodule
Picard group, then tensoring with X loses no information. In this case, then,
the compatibility diagrams above show that the isomorphisms `, c, and a for �
are determined by the corresponding isomorphisms for ∧, together with m and
η. Thus we can think of the bimodule Picard group as acting on symmetric
monoidal structures with fixed unit K, though there is also an action by the
automorphisms of K, and, if Λ is fixed, the 2-fold bimodule automorphisms of
Λ.

One could similarly prove that natural transformations between additive
symmetric monoidal functors represented by X1 and X2 are induced by maps
of bimodules X1 −→ X2.

Proof. Suppose F is a symmetric monoidal functor from ∧ to � with a right
adjoint. Then Watts’ theorem implies that there is a bimodule X and a natural
isomorphism X ⊗M −→ FM . Because F is symmetric monoidal, we have a
natural isomorphism

mM,N : FM�FN −→ F (M ∧N).

This translates to a natural isomorphism

mM,N : Λ′Y,X ⊗ (X ⊗M)⊗ (Y ⊗N) −→ X ⊗ (ΛN,M ⊗M ⊗N),

where Y is just another name for X. Taking M = N = R gives us the desired
isomorphism m. The unit isomorphism η : K ′ −→ FK is just the map η : K ′ −→
X ⊗K. On the other hand, given X, m, and η, we define FM = X ⊗M , η in
the obvious way, and mM,N by naturality from m. We leave to the reader the
translation between the compatibility diagrams of F and the diagrams in the
theorem.
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3. Examples

In this section, we consider some examples of additive closed symmetric
monoidal structures on R-modules. In particular, we find rings R where there
are no such structures, where there is eactly one (up to additive symmetric
monoidal equivalence), where there are exactly seven, and where there are a
proper class.

The most obvious case is when R is a commutative ring, where −∧− is the
usual tensor product. This corresponds to ΛB,A = R with x �1 r = x �2 r =
xr = rx. The maps a and c are both identity maps, the unit K is R itself, and
the map ` is multiplication.

Now suppose R is a cocommutative Hopf algebra over a field K, with di-
agonal ∆, counit ε, and antipode χ. Let us write ∆x =

∑
x′ ⊗ x′′, implicitly

choosing a basis for R. The category of R-modules then becomes a closed sym-
metric monoidal category under the functor M ∧N , where

M ∧N = M ⊗K N

with R-action defined by

x(m⊗ n) =
∑

x′m⊗ x′′n.

The unit is K, made into an R-module via ε. The closed structure is given by
K -mod(M,N), made into an R-module by the formula

(xf)(m) =
∑

x′′f((χ(x′))m).

In case R is the group algebra K[G] of a group, this is just the usual tensor
product of group representations and its associated closed structure, with unit
the trivial one-dimensional representation.

This closed symmetric monoidal structure corresponds to ΛB,A = RB⊗KRA.
The right R-module structures are just right multiplication on the two factors,
and the left R-module structure is given by the same formula

x(m⊗ n) =
∑

x′m⊗ x′′n.

used in defining M ∧N . The commutativity isomorphism is just the twist map
c : RB ⊗K RA −→ RA ⊗K RB , so c(m ⊗ n) = n ⊗m. For this to be a map of
left R-modules, we need R to be cocommutative. The unit isomorphism is the
obvious isomorphism

` : (RB ⊗K RK)⊗R K ∼= RB ⊗K K ∼= RB ,

so that `(m⊗ n) = mε(n).
The associativity isomorphism

a : (RC ⊗K RR)⊗R (RB ⊗K RA) −→ (RR ⊗K RA)⊗R (RC ⊗K RB)
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is more confusing. One might guess that

a(x⊗ y ⊗ z ⊗ w) = y ⊗ w ⊗ x⊗ z

but is WRONG, because this map does not descend to the tensor product over
R. Indeed, we must have

a(x⊗ y ⊗ z ⊗ w) = a(x⊗ 1⊗ y(z ⊗ w))

=
∑

a(x⊗ 1⊗ y′z ⊗ y′′w),

where ∆y =
∑
y′ ⊗ y′′ as before. Now the guess

a(x⊗ 1⊗ y′z ⊗ y′′w) = 1⊗ y′′w ⊗ x⊗ y′z

is correct, and so our final formula for a is

a(x⊗ y ⊗ z ⊗ w) =
∑

1⊗ y′′w ⊗ x⊗ y′z

Coassociativity of the diagonal on R then implies, after some painful checking,
that this is a map of left R-modules. We leave to the excessively diligent reader
the check that all the required coherence diagrams commute.

We would now like to classify all the additive closed symmetric monoidal
structures on R-modules, up to additive symmetric monoidal equivalence, for
various R. The easiest case is when the unit of the symmetric monoidal structure
is R itself. This forces R to be commutative, and in this case there is only one
such closed symmetric monoidal structure.

Proposition 3.1. Suppose R is a ring equipped with an additive closed sym-
metric monoidal structure on the category of R-modules with unit isomorphic
to R. Then R is commutative and this closed symmetric monoidal structure is
additively symmetric monoidal equivalent to the usual one.

We point out as a general rule that if the unit K ′ is isomorphic to some R-
module K, we can always assume that the unit is K, up to symmetric monoidal
equivalence. Indeed, we construct a new additive closed symmetric monoidal
structure by leaving everything the same except the unit isomorphism `, which
we modify by the isomorphism so that the unit is K. The coherence diagrams
still commute, so this is a closed symmetric monoidal structure. A symmetric
monoidal equivalence between this new structure and the old one is given by
the identity functor, with the unit map K ′ −→ K given by the isomorphism.

This proposition is saying that the coherence isomorphisms a, `, and c of
the standard symmetric monoidal structure are determined up to symmetric
monoidal equivalence. In fact, the proof shows that a and c are exactly deter-
mined, though there is some room for flexibility in `.

There is a quick proof that R must be commutative, since the endomorphism
ring of the unit in a symmetric monoidal category must always be commutative,
and if the unit is isomorphic to R that endomorphism ring is R as well. However,
this also falls out of the coherence isomorphisms, so we re-prove this fact in the
proof below.
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Proof. The unit isomorphism shows that Λ1,2
∼= R as a bimodule, using the first

right module structure on Λ. We can then assume it is R using a symmetric
monoidal equivalence. We want to show that Λ1,2 = R as a 2-fold bimodule,
not just as a bimodule. We can encode the second right module structure on Λ
by defining σ : R −→ R by σ(x) = 1�2 x. Note that

z �2 x = (z · 1)�2 x = z(1�2 x) = zσ(x),

so that σ gives us complete information on the second right module structure
on Λ1,2 = R. We need to show that σ is the identity. A computation shows
that σ is a ring homomorphism.

We first show that σ is an isomorphism. Consider the commutativity iso-
morphism c : ΛA,B −→ ΛB,A. This has the property that

c(y) = c(1�1 y) = c(1)�2 y = c(1)σ(y).

Since c is an isomorphism, we conclude that σ is an isomorphism.
We claim that associativity forces R to be commutative and σ to be the

identity. Indeed, we have

a : ΛC,Λ ⊗ ΛB,A −→ ΛΛ,A ⊗ ΛC,B .

Both of these are isomorphic to R as left modules. In the domain, we have

x⊗ y = x(1⊗ y) = x(σ(y)⊗ 1) = xσ(y)(1⊗ 1),

and in the target we have

z ⊗ w = z(1⊗ w) = z(w ⊗ 1) = zw(1⊗ 1).

Thus a is determined by a(1 ⊗ 1). Since a is a left module isomorphism from
(something isomorphic to) R to itself, a(1 ⊗ 1) must be a unit in R, which we
can write as

a(1⊗ 1) = γ ⊗ 1

for some unit γ ∈ R. We will then have

a(x⊗ y) = xσ(y)(γ ⊗ 1).

We first show that R is commutative. Choose arbitrary r, s ∈ R. Find y
such that σ(y) = sγ−1, using the fact that σ is an isomorphism. Then we have

a((1�C r)⊗ y) = a(1⊗ y)�C r.

But we have

a((1�C r)⊗ y) = a(r ⊗ y) = rσ(y)γ(1⊗ 1) = rs(1⊗ 1),

and
a(1⊗ y)�C r = σ(y)γ(1⊗ r) = s(r ⊗ 1) = sr(1⊗ 1).
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We conclude that rs = sr, so R is commutative.
We must also have

a(1⊗ (1�A z)) = a(1⊗ 1)�A z.

This means that
a(1⊗ σ(z)) = (γ �A z)⊗ 1

so
σ2(z)γ(1⊗ 1) = γσ(z)(1⊗ 1).

Thus σ2(z) = σ(z) for all z. Since σ is necessarily one-to-one, we conclude that
σ(z) = z.

We now know that Λ1,2 is isomorphic to R with both right module struc-
tures, and the left module structure, equal to the canonical one. Then the
associativity isomorphism a of Theorem 2.3 is just an isomorphism of left R-
modules from R to itself, so must be right multiplication by some unit r. But
then the associativity pentagon shows that r2 = r3, so r = 1. Similarly, the
commutativity isomorphism is right multiplication by a unit s, and, since we
now know a is the identity, the commutativity-associativity hexagon says that
s2 = s, so s = 1. Finally, ` must also be multiplication by some unit t, but the
coherence diagrams will commute no matter what t is. However, we can define a
symmetric monoidal equivalence from the usual symmetric monoidal structure
to the one with ` = t by letting F be the identity functor, letting the natural
isomorphism m be the identity, and letting η : R −→ R be right multiplication
by t.

There are some simple cases where R is the only possible unit of a closed
symmetric monoidal structure on the category of R-modules.

Theorem 3.2. Let n be an integer. There is a unique additive closed symmetric
monoidal category structure on the category of Z/nZ-modules, up to symmetric
monoidal equivalence.

This theorem was proved in case n = 0 by Foltz, Lair, and Kelly [FLK80].
We will generalize that case to principal ideal domains in Theorem 4.9.

Proof. A right or left Z/nZ-module structure on an abelian group is unique;
we must have nx = xn = x + x + · · · + x for n ≥ 0 and the negative of this
for n < 0. Thus the 2-fold bimodule Λ needed to define a closed symmetric
monoidal structure on Z/nZ-modules is simply a Z/nZ-module, with all of the
module structures being the same. The unit isomorphism guarantees that Λ is
in the Picard group of Z/nZ, which is trivial (see [Lam99, Example 2.22D]).
Hence there is an isomorphism f : Λ −→ Z/nZ. Proposition 3.1 completes the
proof.

The other simple case is when R is a division ring.
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Theorem 3.3. Suppose k is a division ring. If k is not a field, then there is
no additive closed symmetric monoidal structure on the category of k-modules.
If k is a field, there is a unique additive closed symmetric monoidal category
structure on the category of k-modules, up to symmetric monoidal equivalence.

Proof. Suppose we have a closed symmetric monoidal structure induced by
ΛB,A. The unit isomorphism

ΛB,K ⊗k K ∼= k

shows that K has to be a one-dimensional vector space, so is isomorphic to k.
Proposition 3.1 completes the proof.

Since the axioms for an additive closed symmetric monoidal structure on
the category of R-modules do not actually mention R itself, the existence and
number of such structures are both Morita invariant. Hence we get the following
corollary.

Corollary 3.4. Suppose R is a simple artinian ring, so that R ∼= Mn(D) for
some division ring D and some integer n. If D is commutative, there is a unique
additive closed symmetric monoidal structure on the category of R-modules, up
to symmetric monoidal equivalence. If D is not commutative, then there is no
additive closed symmetric monoidal structure on the category of R-modules.

The unit of the closed symmetric monoidal structure on Mn(k)-modules, for
k a field, is the unique simple left Mn(k)-module kn.

To find a case where the additive closed symmetric monoidal structure is
not unique, we consider the group ring k[Z/2]. Even in this simple case, the
classification of additive closed symmetric monoidal structures is quite involved,
and will take the rest of this section and many lemmas. The ring k[Z/2] is both a
commutative ring and a Hopf algebra, so we know there are at least two closed
symmetric monoidal structures. The behavior of this group ring depends on
whether the characteristic of k is 2, so we begin with this case.

We start by identifying the Hopf algebra structures on k[Z/2].

Lemma 3.5. Suppose k is a field of characteristic 2, and R = k[Z/2] ∼=
k[x]/(x2). There are two different isomorphism classes of Hopf algebra struc-
tures on k, one represented by H0, in which ∆(x) = 1 ⊗ x + x ⊗ 1, and one
represented by H1, in which ∆(x) = 1⊗ x+ x⊗ 1 + x⊗ x.

We only use the associativity and unit axioms to prove this lemma, so it
follows that every bialgebra structure on k[Z/2] is a cocommutative Hopf algebra
structure.

Proof. Suppose we have a Hopf algebra structure on R. Then the counit ε must
have ε(1) = 1 since it is a k-algebra map, and ε(x) = 0 since x is nilpotent. We
must have

∆(x) = a1(1⊗ 1) + a2(1⊗ x) + a3(x⊗ 1) + a4(x⊗ x)
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for some a1, a2, a3, a4 ∈ k. The fact that

0 = ∆(x2) = ∆(x)2

implies that a1 = 0. The fact that ∆ is counital implies that a2 = a3 = 1.
For α ∈ k, let Rα denote R together with ε : R −→ k given by ε(1) = 1 and

ε(x) = 0 and ∆: R −→ R⊗k R given by

∆(x) = 1⊗ x+ x⊗ 1 + α(x⊗ x)

A check shows this is a cocommutative (counital coassociative) bialgebra, and
the preceding paragraph shows that every Hopf algebra structure on R is one of
the Rα as a bialgebra. A Hopf algebra structure also has an antipode χ : R −→ R,
but a check shows that the only possible antipode on Rα is given by the identity,
and that this is indeed an antipode. Thus every Hopf algebra structure on R is
one of the Rα.

Any isomorphism f : Rα −→ Rβ of Hopf algebras must be compatible with
the counit, from which we conclude that f(x) = rx for some nonzero r ∈ k.
But then compatibility with ∆ will hold if and only if rα = β. So if β and α
are both nonzero, r = α/β will yield the desired isomorphism, but R0 is not
isomorphic to any other Rα.

In both of these two Hopf algebra structures on R = k[Z/2] (where k has
characteristic 2), the corresponding symmetric monoidal structure has Λ = R⊗k
R, freely generated as a left R-module by m = 1 ⊗ 1 and m �2 x = 1 ⊗ x. We
also have m�1 x = x⊗ 1. However, in H0 we have

xm = 1⊗ x+ x⊗ 1 so m�1 x = xm+m�2 x.

In H1, though, we have

xm = 1⊗ x+ x⊗ 1 + x⊗ x so m�1 x = xm+ (1 + x)m�2 x.

In both cases, the unit isomorphism ` : Λ ⊗ k −→ R has `(m ⊗ 1) = 1 and
`((m�2x)⊗1) = 0. Also the commutativity isomorphism is defined by c(m) = m
(and thus c(m�2 x) = m�1 x). The associativity isomorphism has a(m⊗m) =
m⊗m in both cases, but in H0 we have

a((m�2 x)⊗m) = 1⊗x⊗ 1⊗ 1 + 1⊗ 1⊗ 1⊗x = (m�2 x)⊗m+m⊗ (m�2 x),

whereas in H1 we have

a((m�2 x)⊗m) = 1⊗ x⊗ 1⊗ 1 + 1⊗ 1⊗ 1⊗ x+ 1⊗ x⊗ 1⊗ x
= (m�2 x)⊗m+m⊗ (m�2 x) + (m�2 x)⊗ (m�2 x).

Let us refer to these k-linear closed symmetric monoidal structures as ∧H0

and ∧H1 . Note that X ∧ Y = X ⊗k Y as k-modules in either case, it is just the
action of Z/2 that differs.
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Theorem 3.6. Suppose k is a field of characteristic 2, and let R = k[Z/2] ∼=
k[x]/(x2). Suppose −∧− is a k-linear closed symmetric monoidal structure on
the category of R-modules with unit K. Then one of the following must hold.

1. K ∼= R and − ∧− is k-linearly equivalent to −⊗−.
2. K ∼= k and −∧− is k-linearly equivalent to −∧H1− as a monoidal functor,

but not necessarily as a symmetric monoidal functor.
3. K ∼= k and −∧− is k-linearly equivalent to −∧H0 − by a natural isomor-

phism compatible with the left unit isomorphism `, but not necessarily as
a monoidal functor.

In addition, we have

1. The isomorphism classes (−∧H1−, β) of closed symmetric monoidal struc-
tures with underlying monoidal functor − ∧H1 − are parametrized by ele-
ments β ∈ k, where c(m) = m + βx(m �2 x) in the symmetric monoidal
structure corresponding to β.

2. The isomorphism classes (− ∧H0 −, γ) of closed monoidal structures with
underlying functor − ∧H0 − and unit isomorphism ` are parametrized by
elements

γ ∈ {0} ∪ k×/(k×)3,

where
a(m⊗m) = m⊗m+ γx(m�2 x⊗m�2 x)

in the monoidal structure corresponding to γ.
3. The isomorphism classes (− ∧H0 −, γ, β) of closed symmetric monoidal

structures with underlying monoidal functor (−∧H0−, γ) are parametrized
by elements β, where

c(m) = m+ βx(m�2 x)

in the symmetric monoidal structure corresponding to β, as follows.
(a) If γ = 0, then β ∈ {0} ∪ k×/(k×)2.
(b) If γ 6= 0 and k does not have a primitive cube root of 1, then β ∈ k.
(c) If γ 6= 0 and k does have a primitive cube root ω of 1, then β = 0 or

a coset of the action of Z/3 on k× given by the action of ω.

Just so we have a specific concrete example, this theorem says that when
k = Z/2, there are seven k-linear isomorphism classes of k-linear closed sym-
metric monoidal structures on k[Z/2]-modules, one corresponding to the usual
tensor product, two corresponding to different symmetric monoidal structures
on − ∧H1 −, and four corresponding to different structures on the underlying
unital functor − ∧H0 −.

We will prove this theorem through a series of lemmas.

Lemma 3.7. Let R = k[x]/(x2) where k is a field, and suppose − ∧ − is a k-
linear closed symmetric monoidal structure on the category of R-modules, with
unit K. Then either K ∼= R or K ∼= k. If K ∼= R, then − ∧ − is equivalent to
the usual tensor product.
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Proof. Any decomposition of K as a direct sum of R-modules induces a de-
composition of R as a direct sum of R-bimodules, via the unit isomorphism
ΛR,K ⊗K ∼= RR. Since R is indecomposable, K must also be indecomposable.
Take any nonzero m ∈ K. The annihilator of m is either (0) or (x). If it is
(0), then K contains R as a submodule. But R is self-injective, so K would
then contain R as a summand. Since K is indecomposable, K ∼= R, and − ∧−
is equivalent to the usual tensor product by Proposition 3.1. If this is not the
case, then x annihilates all of K. But then K is a k-vector space, so since it is
indecomposable, K ∼= k.

Lemma 3.8. Let R = k[x]/(x2) where k is a field, and suppose − ∧ − is a k-
linear closed symmetric monoidal structure on the category of R-modules, with
unit k. Let Λ be the 2-fold bimodule inducing − ∧−. Then there is an element
m ∈ Λ such that

Λ = Rm⊕R(m�2 x) ∼= R⊕R(m�2 x)

as left R-modules, where `(m ⊗ 1) = 1 and `((m �2 x) ⊗ 1) = 0. Furthermore,
m�2 x 6= 0.

This lemma also says that Λ is a principal bimodule under the right action
�2, generated by m. We do not know yet whether Λ is a free bimodule on m,
though we will prove this later.

Proof. Since ΛB,k ⊗ k ∼= RB by the left unit isomorphism, we have

Λ/(Λ�2 x) ∼= R.

If we choose an m ∈ Λ with `(m⊗ 1) = 1, then for any λ ∈ Λ, we have

λ = `(λ⊗ 1)m+ n�2 x = `(λ⊗ 1)m+ (`(n⊗ 1)m+ d�2 x)�2 x

= `(λ⊗ 1)m+ `(n⊗ 1)(m�2 x),

where n and d denote unknown elements of Λ. Thus Λ is generated as a left
R-module by m and m�2 x. Furthermore, if rm ∈ Rm ∩R(m�2 x), then

r = `(rm⊗ 1) = `(s(m�2 x)⊗ 1) = 0,

so
Λ = Rm⊕R(m�2 x)

as left R-modules, as required.
Note also that

λ�2 x = `(λ⊗ 1)(m�2 x).

If m�2 x = 0, this formula shows Λ�2 x = 0. The commutativity isomorphism
then implies Λ �1 x = 0, so x acts trivially on the right on ΛB,k ⊗ k ∼= RB .
Since this is false, we must have m�2 x 6= 0.
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At this point, we have not determined whether m�2 x generates a copy of k
or a copy of R. This depends on whether x(m�2 x) = 0 or not. Note, however,
that `((m�1 x)⊗ 1) = x, so we must have

m�1 x = xm+ b(m�2 x).

for some b ∈ R. We will then have

(m�2 x)�1 x = (xm+ b(m�2 x))�2 x = xm�2 x.

It will be helpful in what follows if we write a = a0 + a1x for elements a ∈ R,
with a0, a1 ∈ k.

Lemma 3.9. Suppose the characteristic of k is 2. In the situation of Lemma 3.8
and with the notation above, there is a commutativity involution c : ΛA,B −→
ΛB,A if and only if b0 = 1, and in that case we have

c(m) = (1 + αx)m+ (βx)(m�2 x)

for some α, β ∈ k, which can be anything. This implies

c(m�2 x) = xm+ (b+ αx)(m�2 x).

Proof. Write
c(m) = rm+ s(m�2 x),

for some r, s ∈ R. Then

c(m�2 x) = c(m)�1 x = rxm+ rb(m�2 x) + sx(m�2 x).

In order for c to have the desired properties, we need

c(m�1 x) = c(m)�2 x and c2(m) = m.

In order for c2(m) = m, computation shows that we need

r2 + rsx = 1 and (rs+ rsb+ s2x)(m�2 x) = 0.

The first equation is equivalent to (r0)2 = 1 and 2r0r1 + r0s0 = 0, so r0 = ±1
and s0 = −2r1. Since we are in characteristic 2, this means r0 = 1 and s0 = 0.
We leave the second equation aside for the moment. In order for c(m �1 x) =
c(m)�2 x, computation shows that we need

r(1 + b)x = 0 and (sx+ rb2 + sbx)(m�2 x) = r(m�2 x).

Since we know that r0 = ±1, this first equation implies that b0 = −1; since we
are in characteristic 2, b0 = 1. Computation then shows that, in characteristic
2, the conditions r0 = b0 = 1, s0 = 0 guarantee that both equations

(rs+ rsb+ s2x)(m�2 x) = 0 and (sx+ rb2 + sbx)(m�2 x) = r(m�2 x)

also hold, whether x(m �2 x) = 0 or not. The proof is completed by taking
α = r1 and β = s1.
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In fact, we can make α = 0 by modifying our choice of m.

Lemma 3.10. In the situation of Lemma 3.9, so in particular when the char-
acteristic of k is 2, we can modify our choice of the bimodule generator m of Λ
so that

c(m) = m+ βx(m�2 x)

for some β ∈ k. In this case, c(m�2 x) = m�1 x.

From now on, we assume m is chosen as in Lemma 3.10.

Proof. Let n = m + α(m �2 x). Then `(n ⊗ 1) = 1, so n is a perfectly good
bimodule generator for Λ. Note that

n�2 x = m�2 x and n�1 x = xn+ b(n�2 x)

as before (after some calculation). However, we have

c(n) = n+ γx(n�2 x),

after some calculation, for some γ ∈ k.

We must now come to grips with the associativity isomorphism

a : ΛC,Λ ⊗ ΛB,A −→ ΛΛ,A ⊗ ΛC,B .

If Λ is a free bimodule generated by m, then both the domain and range of a
are isomorphic to R⊕4 as left R-modules, with summands generated by m⊗m,
(m�2x)⊗m, m⊗(m�2x), and (m�2x)⊗(m�2x). If Λ has dimension 3, on the
other hand, both the domain and range of a are isomorphic to R⊕ k⊕R, with
summands generated by m⊗m, (m�2 x)⊗m and m⊗ (m�2 x), respectively.
Indeed, in this case Λ ∼= R⊕ k as a left R-module, so

Λ⊗ Λ ∼= Λ⊕ Λ/(Λ�ε x) ∼= R⊕ k ⊕R,

where ε = 2 in the domain of a and ε = 1 in the codomain of a.
Note that, whatever the dimension of Λ, in the domain of a we have

m⊗ x(m�2 x) = (m�2 x)⊗ (m�2 x),

whereas in the codomain of a we have

m⊗x(m�2x) = (m�1x)⊗(m�2x) = xm⊗(m�2x)+(1+b1x)(m�2x)⊗(m�2x).

In particular, if the dimension of Λ is 3, then

(m�2 x)⊗ (m�2 x) = 0

in the domain of a and

(m�2 x)⊗ (m�2 x) = xm⊗ (m�2 x)
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in the codomain of a.
With respect to this basis, write

a(m⊗m) = (e1, e2, e3, e4) and a((m�2 x)⊗m) = (f1, f2, f3, f4).

If the dimension of Λ is 3, then we take e4 = f4 = 0. Note that if the dimension
of Λ is 3, we must have

xa((m�2 x)⊗m) = 0,

so
f0

1 = f0
3 = 0.

Lemma 3.11. With the above definitions, if a is a map of 3-fold bimodules,
then the left and right unit coherence diagram commutes if and only if e1 = 1,
e2 = 0, f1 = 0, and f2 = 1.

Proof. Apply the coherence diagram to m⊗m⊗ 1 and to (m�2 x)⊗m⊗ 1.

We still have to determine what conditions are necessary for a to be a map
of 3-fold bimodules.

Lemma 3.12. In order for the map a defined above to be a map of 3-fold
bimodules making the left and right unit coherence diagram commute, Λ must
be the free bimodule on m, and

e1 = 1, e2 = 0, e0
3 = 0, f1 = 0, f2 = 1, f3 = 1, f4 = b1 + e3.

Proof. Of course, we know already that e1 = 1, e2 = 0, f1 = 0, f2 = 1, with
f0

3 = 0 if Λ has dimension 3. We have implicitly assumed that a is a map of left
R-modules by defining it only in terms of generators. To ensure that a preserves
the right module structure represented by A in

a : ΛC,Λ ⊗ ΛB,A −→ ΛΛ,A ⊗ ΛC,B ,

we must have

a(m⊗ (m�2 x)) = (1, 0, e3, e4)�A x = (0, 1, 0, e3)

and
a((m�2 x)⊗ (m�2 x)) = (0, 0, 0, f3).

We now turn to the right module structure represented by B. Here we must
have

a(m⊗ (m�1 x)) = a(m⊗m)�B x.

Calculation shows that this forces f3 = 1, and this rules out the case when
the dimension of Λ is 3 (since f0

3 = 0 if the dimension of Λ is 3). The same
calculation shows that f4 = b1 + e3. Further calculation shows that this is
enough to ensure that a preserves the right module structure represented by B.
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We now must ensure that a preserves the right module structure represented by
C. More calculation of the relation

a((m�1 x)⊗m) = a(m⊗m)�C x

gives e3x = 0, so e0
3 = 0. Further calculation implies that this is enough to

make a preserve the right module structure represented by C.

We turn finally to the associativity pentagon.

Lemma 3.13. Given that a satisfies the conditions of Lemma 3.12, a makes
the associativity pentagon commute if and only if

e3 = 0, f4 = b1, e0
4 = 0

and either
e1

4 = 0 or b1 = 0.

Proof. If we apply the associativity pentagon to (m�2x)⊗m⊗m, we eventually
find

e3 = 0 and e0
4 = 0.

and so f4 = b1 + e3 = b1. Further computation with the associativity pentagon
applied to m⊗m⊗m eventually yields

e1
4b

1 = 0, so e1
4 = 0 or b1 = 0.

These conditions then make the associativity pentagon commute.

We are now left with determining which of these different Λ define additively
equivalent symmetric monoidal structures. Recall from Theorem 2.4 that for Λ′

and Λ to define additively equivalent symmetric monoidal structures, we need
an element X of the bimodule Picard group, an isomorphism η : k −→ X ⊗ k,
and an isomorphism

Λ′Y,X ⊗XA ⊗ YB −→ X ⊗ ΛB,A

making various diagrams commute, where Y = X.

Lemma 3.14. Let R = k[x]/x2. Up to isomorphism, the only invertible R-
bimodules are the Ru, where u is a unit in k, Ru = R as a left module, and
1� x = ux.

This follows immediately from [Yek99, Lemma 3.3]. With all these lemmas
in hand, we can now complete the proof of Theorem 3.6.

Proof of Theorem 3.6. Let X = Ru, and suppose we have an isomorphism
η : k −→ X ⊗ k of left modules and an isomorphism

q : Λ′Y,X ⊗XA ⊗ YB −→ X ⊗ ΛB,A
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of 2-fold bimodules making the compatibility diagrams of Theorem 2.4 commute.
The map η is determined by η(1) = 1⊗ ρ for some nonzero ρ in k, and the map
q is determined by

q(m⊗ 1⊗ 1) = σ(1⊗m) + τ(1⊗ (m�2 x))

with σ, τ ∈ R, where we have used m for a bimodule generator in both Λ′

and Λ satisfying the condition on c(m) as in Lemma 3.10. Since q is a map of
bimodules, it follows that

q((m�2x)⊗1⊗1) = q(m⊗x⊗1) = u−1q(m⊗(1�x)⊗1) = u−1σ(1⊗(m�2x)).

In particular, for q to be an isomorphism, we need σ to be a unit in R. We also
need

q((m�1 x)⊗ 1⊗ 1) = u−1q(m⊗ 1⊗ (1 · x)) = u−1q(m⊗ 1⊗ 1)�1 x.

Further calculation with this last equation yields b1Λ = u−1b1Λ′ .
This means that if b1Λ′ is nonzero, we can choose u so as to ensure b1Λ = 1.

Said another way, given Λ′ with b1 nonzero, we can define Λ = Ru−1 ⊗ Λ′ ⊗
Ru ⊗ Ru for a suitable u and get an additively equivalent symmetric monoidal
structure with b1 = 1. Any isomorphism between a Λ′ and a Λ both with b1 = 1
must have u = 1, so we can think of it as an automorphism of Λ. It is still
useful to use Λ′ for the domain copy of Λ, because the choice of generator m as in
Lemma 3.10 could be different in the two copies of Λ. We can then work through
the compatibility diagrams of Theorem 2.4 in this case. The unit diagram forces
σ = ρ1, so σ ∈ k. In order for the commutativity diagram to commute, we need
τx = 0, so τ0 = 0. Then one finds that the β in the commutativity isomorphism
in both Λ′ and Λ must be the same. Since we are in the case where b1 = 1, the
associativity isomorphism is completely determined by the preceding lemmas.
Thus we find that if b1 is nonzero, then the monoidal structure determined by Λ
is additively equivalent to the one given by the Hopf algebra H1. Since β does
not change under these isomorphisms, it could be anything, so the different
symmetric monoidal structures on − ∧H1 − are classified by β.

Now suppose b1Λ′ = b1Λ = 0. As above, we must have σ = ρ−1 in order
to ensure the unit compatibility diagram commutes. The commutativity com-
patibility diagram again forces τ0 = 0, but this time we have βΛ = u−2βΛ′ .
Since b1 = 0, the preceding lemmas allow for a nontrivial e1

4 as well, so we must
check the associativity compatibility diagram too. Painful computation then
gives that the e1

4 for Λ is u−3 times the e1
4 for Λ′. Hence the different monoidal

structures on − ∧H0 − are classified by

γ ∈ {0} ∪ k×/(k×)3,

where γ is (the class of) e1
4. If γ = 0, then we can use Ru to make the symmetric

monoidal structure corresponding to β isomorphic to the one corresponding to
u−2β. Hence the symmetric monoidal structures when γ = 0 correspond to

β ∈ {0} ∪ k×/(k×)2.
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When γ 6= 0, if we fix γ we can only use the Ru with u3 = 1. If k has no primitive
cube root of 1, then, the symmetric monoidal structures are parametrized by
β ∈ k, but if k does have a primitive cube root of 1, the symmetric monoidal
structures are parametrized by orbits of Z/3 acting on k by multiplying by the
primitive cube root of 1.

We now consider closed symmetric monoidal structures on k[Z/2]-modules
when the characteristic of k is not 2. In this case, there are two 1-dimensional
representations: k+, where Z/2 acts trivially, and k−, where Z/2 acts by −1.
The answer is now wildly different; there are a proper class of inequivalent closed
symmetric monoidal structures!

Theorem 3.15. Suppose k is a field whose characteristic is not 2, and let
R = k[Z/2] ∼= k[x]/(x2 − 1). If − ∧ − is a closed k-linear symmetric monoidal
structure on the category of R-modules, then its unit K is isomorphic to R, k+,
or k−. If the unit is isomorphic to R, then −∧− ∼= −⊗− as k-linear symmetric
monoidal functors. If K ∼= k−, then − ∧ − is k-linearly symmetric monoidal
equivalent to a closed k-linear symmetric monoidal structure whose unit is k+.
Given any R-module M , there is a k-linear symmetric monoidal structure for
which the unit is k+ and k− ∧ k− = M .

It is easy to see that symmetric monoidal structures with nonisomorphic
values of M cannot be equivalent. However, we do not know if there is more
than one closed symmetric monoidal structure for a given M .

Proof. Let x denote the element [1] of k[Z/2], so R = k[Z/2] ∼= k[x]/(x2 − 1).
Since the characteristic is not 2, this ring is semisimple. Any module M splits
as M+ ⊕M−, where M+ is the 1-eigenspace of x and M− is the −1-eigenspace
of x. In particular, R itself so splits, with the splitting given by the orthogonal
idempotents e+ = (1/2)(1+x) and e− = (1/2)(1−x). This produces a splitting

R -mod ∼= k -mod×k -mod,

up to equivalence, of the entire category of R-modules. Thus every R-module
is a direct sum of copies of k+ and k−, and there are no maps from k+ to k−,
or from k− to k+. Note that there appears to be a notational clash here, as k+

should denote the 1-eigenspace of k instead of what it actually denotes, which is
k where Z/2 acts as 1. However, there is not actually a clash, since the notation
k by itself does not denote an R-module. The notation is so convenient we are
willing to tolerate this apparent ambiguity.

This means that any 2-fold bimodule M will split as a direct sum of 8 2-fold
bimodules aMb,c, where a, b, c ∈ {+,−}. Here aMb,c is the sub 2-fold bimodule
of M on which Z/2 acts on the left according to a (trivially if a = + and by
−1 if a is −), Z/2 acts on the right using the first action according to b, and
Z/2 acts on the right using the second action according to c. Of course, aMb,c

is a direct sum of copies of akb,c, which denotes k with the left action of Z/2
determined by a and the two right actions determined by b and c. The reader
is warned that the same apparent notational clash arises here as in the previous
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paragraph. The same comment applies to ordinary bimodules M , but now there
will be 4 summands of the form aMb, and aMb will be a direct sum of copies of
akb.

Given a k-linear closed symmetric monoidal structure, the corresponding 2-
fold bimodule Λ splits as a direct sum of aΛb,c, and the unit K splits as K+⊕K−.
One can easily check that

akb,c ⊗2 kc ∼= ka,b,

where the subscript 2 on the tensor product indicates we are using the second
right module structure to form the tensor product. On the other hand, if d 6= c,
then

akb,c ⊗2 kd = 0.

Now consider the left unit isomorphism of bimodules

` : AΛB,K ⊗K ∼= ARB .

Since the bimodule R = +k+ ⊕ −k−, there must be a sign a such that

+Λ+,a = +k+,a and Ka = ka

and a sign b such that

−Λ−,b = −k−,b and Kb = kb.

If a 6= b, then K = R, and so Proposition 3.1 tells us that our closed
symmetric monoidal structure is equivalent to ⊗R. We can therefore assume
a = b. The commutativity isomorphism tells us xΛy,z has the same dimension
as xΛz,y. Therefore, taking z 6= a, we find that zΛa,z is nonzero. If Kz were also
nonzero, we would get a nonzero summand zka in the bimodule ΛB,K ⊗K ∼= R.
Since we cannot have such a term, we conclude that K = ka, so the unit is
one-dimensional over k.

There is an obvious self-equivalence of the category of R-modules that per-
mutes the two copies of k -mod. That is, it sends k+ to k−, and vice versa.
Up to symmetric monoidal equivalence, then, we can assume the unit of our
symmetric monoidal structure −∧− is k+. Let M = k− ∧ k−. Then, using the
decomposition of R = +k+ ⊕ −k− as bimodules and the left unit isomorphism
as above, we get

Λ ∼= +k+,+ ⊕ −k−,+ ⊕ −k+,− ⊕M−,−,

where M−,− is the 2-fold bimodule whose underlying left module is M , and
where x acts as −1 in both right module structures. Indeed, the term −Λ+,+,
if nonzero, would produce a summand −k+ in R via the left unit, and the term
+Λ−,+, if nonzero, would produce a summand +k− in R. The commutativity
isomorphism then tells us that the term +Λ+,− must also be 0. This leaves us
with the one-dimensional terms in Λ that we already understand, and the terms
aΛ−,−. Computation using the definition

k− ∧ k− = ΛA,B ⊗ k− ⊗ k−
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tells us these terms together form M−,−.
Now suppose we are given M . We want to construct a k-linear closed sym-

metric monoidal structure on R-modules with k− ∧ k− = M . We simply define
k+ ∧N = N ∧k+ = N for any R-module N , and k− ∧k− = M . On morphisms,
we note that there are no nonzero morphisms from k+ to k− or vice versa, and
that every endomorphism of k+ or k− is given by multiplication by an element
of k. So we define the induced morphism to be multiplication by the same el-
ement of k. Since every R-module is a direct sum of copies of k+ and k−, this
defines − ∧ − as a bifunctor. We define the left unit to be the identity. The
commutativity isomorphism

cxy : kx ∧ ky −→ ky ∧ kx

is the identity, where x and y denote signs. We then extend through direct
sums. The associativity isomorphism

ax,y,z : (kx ∧ ky) ∧ kz −→ kx ∧ (ky ∧ kz)

is the identity as well. We leave to the reader the check that the coherence
diagrams hold.

4. Structural results

In the examples in the previous section, especially in Theorem 3.15, we
saw that the 2-fold bimodule Λ can be very complicated. It does not have
to be finitely generated, or even countably generated. However, it cannot be
completely random either. Furthermore, in all the examples we have, the unit
K of an additive symmetric monoidal structure on the category of R-modules
is always a prinicipal R-module. It is tempting to wonder whether this always
holds, or whether there are other properties that K must have.

In this section, we show that K is always a finitely generated module with
commutative endomorphism ring, and that Λ is faithful in a very strong sense.

We begin by noting that tensoring with Λ reflects any property of morphisms
that the tensor product preserves.

Proposition 4.1. Suppose R is a ring and Λ1,2 is a 2-fold R-bimodule that
determines a closed symmetric monoidal structure on the category of R-modules
with unit K. Let P be a replete class of morphisms of abelian groups such that :

1. If f is a morphism of left R-modules whose underlying morphism is in P,
then A⊗ f is also in P for any right R-module A;and

2. If f is a morphism of right R-modules whose underlying morphism is in
P, then f ⊗B is also in P for any left R-module B.

Then, if f is a morphism of right R-modules, then f ∈ P if and only if f⊗Λ ∈ P.
Similarly, if g is a morphism of left R-modules, then g ∈ P if and only if
Λ⊗ g ∈ P. This statement holds with either right module structure on Λ.
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Recall that a class of morphisms is replete whenever f ∈ P and f ∼= g in the
category of morphisms, then g ∈ P. Said another way, if we have a commutative
square

A
f−−−−→ B

i

y yj
A′ −−−−→

g
B′

where i, j are isomorphisms, then f ∈ P if and only if g ∈ P.

Proof. Suppose g is a morphism of left R-modules. By definition, if g ∈ P, then
Λ ⊗ g ∈ P. Conversely, suppose Λ ⊗ g ∈ P, where we use the leftmost right
module structure on Λ. Then

g ∼= RR ⊗ g ∼= (ΛB,K ⊗K)⊗ g ∼= (ΛB,K ⊗ g)⊗K,

and this is in P since ΛB,K ⊗ g is so. We use the commutativity isomorphism
to prove the same thing for the other right module structure on Λ. If f is a
morphism of right R-modules, the proof is even easier. Indeed, we have

f ∼= f ⊗R ∼= f ⊗ (ΛB,K ⊗K) ∼= (f ⊗ ΛB,K)⊗K,

so if f ⊗ Λ ∈ P, then f ∈ P.

Taking the class P to be the collection of zero morphisms, the collection
of isomorphisms, and the collection of surjective maps gives us the following
corollary.

Corollary 4.2. Suppose R is a ring and Λ1,2 is a 2-fold R-bimodule that de-
termines a closed symmetric monoidal structure on the category of R-modules
with unit K. Let f denote a morphism of right R-modules and let g denote a
morphism of left R-modules.

1. f ⊗ Λ = 0 if and only if f = 0. With either right module structure,
Λ⊗ g = 0 if and only if g = 0.

2. f ⊗ Λ is an isomorphism if and only if f is so. With either right module
structure, Λ⊗ g is an isomorphism if and only if g is so.

3. f ⊗ Λ is a surjection if and only if f is so. With either right module
structure, Λ⊗ g is a surjection if and only if g is so.

In particular, these imply that Λ is faithful.

Corollary 4.3. Suppose R is a ring and Λ1,2 is a 2-fold R-bimodule that de-
termines a closed symmetric monoidal structure on the category of R-modules.
Then Λ is faithful as a left or right R-module, with either right module structure.

Proof. Choose r 6= 0 ∈ R. Then the map R −→ R that is left multiplication by
r induces left multiplication by r on Λ = R ⊗ Λ. Since r 6= 0, this map is also
nonzero by Corollary 4.2. Hence r does not annihilate Λ, so Λ is faithful. Use
right multiplication by r to see that Λ is faithful as a right R-module.
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They also imply that K is finitely generated.

Theorem 4.4. The unit K in an additive closed symmetric monoidal structure
on the category of R-modules is finitely generated.

Proof. In the unit isomorphism ΛB,K ⊗ K ∼= RB , write 1 as the image of a
finite sum

∑
λi ⊗ ki. Let K ′ denote the submodule of K generated by the ki,

and j : K ′ −→ K denote the inclusion. Then Λ ⊗ j is surjective, so j must also
be.

We suspect that the unit K must in fact be a principal R-module, but we
do not know how to prove this.

Another essential property of K, or the unit of any symmetric monoidal
category, is that its endomorphisms commute with each other. Somewhat more
is true in our case.

Theorem 4.5. Suppose K is the unit of an additive closed symmetric monoidal
structure on the category of R-modules. Then EndR(K) is a subring of the
center Z(R) of R.

Proof. Suppose f ∈ EndR(K). Then Λ ⊗ f is a bimodule endomorphism of
R, through the unit isomorphism. Any bimodule endomorphism of R must
be given by x 7→ rx for some r ∈ Z(R). This defines a ring homomorphism
EndR(K) −→ Z(R). If f is in the kernel of this homomorphism, then Λ⊗ f = 0,
but then f = 0 by Corollary 4.2.

We note that EndR(K) can be a proper submodule of Z(R), as for example
when R = k[x]/(x2) and the unit is k (of characteristic 2).

It is pretty rare for an R-module to have a commutative endomorphism ring.
Using the work of Vasconcelos [Vas70], for example, we can deduce the following
corollary.

Corollary 4.6. Suppose R is a commutative Noetherian ring with no nonzero
nilpotent elements, and K is the unit of an additive closed symmetric monoidal
structure on the category of R-modules. Then

K ∼= a/b

for some radical ideal b and some ideal a ⊇ b with the ideal quotient (b:a) = b.

Recall that the ideal quotient (b:a) is the set of all x such that xa ⊆ b.

Proof. Let b = ann(K), the annihilator of K. We have an obvious monomor-
phism of rings R/b −→ EndR(K) that takes r to multiplication by r, But
EndR(K) is a subring of R by Theorem 4.5. Hence R/b is a subring of R,
and therefore has no nilpotents, so b is a radical ideal. Thus K is a finitely gen-
erated (by Theorem 4.4), faithful R/b-module with commutative endomorphism
ring, and R/b is a commutative Noetherian ring with no nonzero nilpotent el-
ements. Vasconcelos [Vas70] proves in this situation that K is an ideal in R/b.
Hence K ∼= a/b for some ideal a of R. The condition on the ideal quotient is so
that the annihilator of K will in fact be b.
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Note that, if M is a submodule of the unit K, then the image of Λ⊗M in
Λ⊗K ∼= R will be a sub-bimodule of R, and hence a two-sided ideal.

Corollary 4.7. Suppose K is the unit of an additive closed symmetric monoidal
structure on the category of R-modules. Then every nonzero proper submodule
of K gives rise to a nonzero proper two-sided ideal of R. Hence, if R is a simple
ring, then K is a simple left module.

We note that a simple commutative ring is of course a field, but there are
many simple noncommutative rings that are not division rings. We would like to
be able to say that the map from nonzero proper submodules of K to two-sided
ideals of R is one-to-one, but we do not know if this is true.

Proof. Suppose L is a proper submodule of K. Then the maps L −→ K and
K −→ K/L are both nonzero, so they remain so after tensoring with ΛB,K by
Corollary 4.2. Hence the image of ΛB,L ⊗ L is a nonzero proper subbimodule
of ΛB,K ⊗K = RB .

As above, we do not know if this map from submodules of K to two-sided
ideals in R is one-to-one, but it is on direct summands of K.

Corollary 4.8. Suppose K is the unit of an additive closed symmetric monoidal
structure on the category of R-modules. There is a one-to-one map from iso-
morphism classes of direct summands of K to central idempotents in R. In
particular, if R is indecomposable as a ring, then K is indecomposable as an
R-module.

Proof. Suppose M is a direct summand of K, so that there is a retraction
f : K −→ M . Tensoring with Λ gives us a retraction of bimodules R −→ Λ⊗M .
The composite

R −→ Λ⊗M −→ R

must be multiplication by a central idempotent e of R, with Λ⊗M = eR. The
bimodule Λ ⊗M determines e [Lam01, Exercise 22.2], and we can recover M
from Λ⊗M , up to isomorphism, by tensoring witk K.

Finally, we put these structural results together to show that there is only
one closed symmetric monoidal structure on R-modules when R is a principal
ideal domain that does not contain a field.

Theorem 4.9. Suppose R is a principal ideal domain with an additive closed
symmetric monoidal structure on the category of R-modules. Then the unit K is
either isomorphic to R or to a field R/p for some prime element of R. Thus, if
R does not contain a field, there is a unique additive closed symmetric monoidal
structure on the category of R-modules, up to symmetric monoidal equivalence.

Note that, if k is a field, then k[x] is a principal ideal domain and can be made
into a Hopf algebra over k with ∆(x) = 1⊗ x+ x⊗ 1, so there are at least two
inequivalent additive closed symmetric monoidal structures on k[x]-modules.
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Proof. We know from Theorem 4.4 and Corollary 4.8 that the unit K of a
closed symmetric monoidal structure onR-modules is an indecomposable finitely
generated R-module. Since R is a principal ideal domain, this means K ∼= R/pn

for some prime element p ∈ R. On the other hand, we know from Corollary 4.6
that the annihilator b of K must be a radical ideal, so n = 1 and K ∼= R/p.
According to Theorem 4.5, EndR(R/p) = R/p must be a subring of R. Thus if
R does not contain a field, we must have p = 0, so K ∼= R. Then Proposition 3.1
completes the proof.
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